Modelling and design tools adapting to new materials
Modelling and design tools adapting to new materials
Welcome to a Medical Battery specialist of the Agilent Battery
The growing use of silicon alternatives such as gallium nitride and silicon carbide is forcing changes in electronic modelling and design software
The use of alternative organic and inorganic materials and compounds to replace traditional silicon within integrated circuits (ICs) and transistors is widely expected to expand over the next few years. As a result, modelling and simulation tools are being upgraded to let design and manufacturing companies work out how best to use them.
Various analyst predictions forecast broader adoption of components based on transistors that use inorganic materials such as gallium nitride (GaN) or silicon carbide (SiC) as a semiconductor band-gap compound to handle the same voltages but in smaller, more reliable packages.
French market research firm Yole Développement predicted that revenue from sales of GaN-based devices would grow from $10m in 2012 to $500m in 2016, for example, with an expected surge in demand for electric vehicles using them for mains battery with like Agilent N9912A Battery, Agilent N9915A Battery, Agilent N9916A Battery, Agilent N9917A Battery, Agilent N9927A Battery, Agilent N9937A Battery, Anritsu MT9082A2 Battery, Anritsu MT9082A8 Battery, Anritsu MT9082C9 Battery, Anritsu MT9082A2 Battery, Anritsu MT9080 Battery, Anritsu MT9080D Batterychargers, DC-DC voltage conversion systems and drivetrains predicted to push that figure to $1bn beyond 2017.
More recently IHS, has forecast that GaN-on-silicon LEDs will increase their market share from 1 per cent in 2013 to 40 per cent in 2020.
Semiconductor company Cree manufactures SiC substrates and group III-nitride epitaxial wafers for use in transistors utilised for light emitting diodes (LEDs), power switching devices and radio frequency (RF) power transistors for wireless communications.
In 2014 Cree introduced a family of high-power GaN RF transistors in low-cost plastic packages, including a 300W model operating at 2.7GHz. They are destined for the fourth generation (LTE, or long term evolution) cellular mobile network infrastructure currently being deployed by operators worldwide.
Laurence Wilson, research director at ABI research calculates that while silicon laterally diffused metal oxide semiconductor (LDMOS) has been the dominant technology in microwave and RF applications for the last 20 years, GaN RF power alternatives have recently 'captured a meaningful market share'. But while adoption of GaN components has so far been limited because of their far higher costs, Cree's plastic-package design brings the difference down to a level that is much closer to parity with silicon.Wilson believes this will make GaN transistors the principal choice for next-'generation wireless networks.
Cree did not reveal which EDA or M&S software it used to create its new plastic-packaged transistors, but the company produced a suite of Verilog-A non-linear device models for a previous family of GaN RF devices using Agilent's Advanced Design System (ADS – the EDA software system now owned by Keysight Technologies' EEsof EDA division) and the Microwave Office design platform owned by AWR (formerly Applied Wave Research).
When combined with envelope simulators, these Verilog-A models allow designers to investigate high efficiency circuit approaches, such as Doherty amplifiers, to improve adjacent channel power ratios, spectral re-growth and error vectors. With the 2.7GHz modules available at power levels of 60, 100, 150, 200 and 300 watts, and at different frequencies ranging between 690-960MHz, 1800-2300MHz and 2300-2700MHz, EDA and M&S tools will have played a huge part in validating Cree designs to ensure required levels of drain efficiency, gain, moisture sensitivity levels (MSL-3) and JEDEC environmental standards.
0 Comments:
Post a Comment
Subscribe to Post Comments [Atom]
<< Home